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Overview

® Hot Plasma in Clusters of Galaxies
® Hydrodynamic Convection (‘normal’ convection; e.g., the sun)

® Convection induced by Anisotropic Thermal Conduction

® new convective instabilities: the “MTI” & “HBI”

® Implications for Clusters

® incl. interaction btw. thermal plasma & cosmic rays from an AGN




Clusters of Galaxies

® |argest gravitationally bound objects: M. ~ 10415 Mg
Rvir gy |-3 MPC

® ~ 84% dark matter; ~ 14 % plasma;~ 2% stars
® on exponential tail of the mass function: useful cosmological probe

® host the most massive galaxies (~ 10'? Mo) and black holes (~ 10%'° M)

X-ray K " optical - radio (BH &
(thermal plasma) - (stars) relativistic plasma)




Hot Plasma in Clusters

cluster temperature profiles
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Ly ~ 104346 erg s°!
n~ 1041 cm
T~ 1-15 keV
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“Cool Core’” Clusters

in at least ~ 50% of clusters, tcool < Hubble time for r = 100 kpc
absent a heat source: Mcoo ~ 100-1000 Mo yr-!

® not observed: Msear= 0.01 Mcool; Tmin ~ 1/3 Toir

=> a heat source balances radiative cooling

® ~ spherically out to ~ 100s kpc

proposed sources of heating include

® a central (radio loud) AGN «—

® thermal conduction from large R

Wise et al. 2007




Hydrodynamic Convection

® Schwarzschild criterion for convection: ds/dz < 0

® Motions slow & adiabatic: pressure equil, s ~ const

low entropy (s) background fluid
Shg Pbg DPbg
s(p, p) o< Infp/p7]
if ds/dz < 0 — pf < ppg
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Cluster Entropy Profiles
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Anisotropic Thermal Conduction in Cluster Plasmas

Guiding
charged plasma _~ Magnetic

electron mean free path: particle field line

d & 2 —1 Pe
{2 ( ) ( 4 ) kpc
3 keV 0.0lcm—3 pe: electron
Larmor radius

O IV W e
Pe 10=6G.0 A 0.0lem=3 3keV

le >> pe = heat transport is anisotropic (primarily along B)




The Magnetothermal Instability (MTI)

Balbus 2000, 2001; Parrish & Stone 2005, 2007; Quataert 2008; Sharma, Quataert, & Stone 2008

/
i Tf > Tbg

convectively
unstable
(dT/dz < 0)
>

weak B-field growth time
no dynamical effect; ~ dyn. time
only channels heat flow




The MTI

magnetic field lines
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The MTI in Clusters

cool core cluster temperature profile

MTI unstable
r =100 kpc
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The Heat Flux-Driven Buoyancy Instability (HBI)

Quataert 2008; Parrish & Quataert 2008
converging &

hot diverging
heat flux
=

conductive
heating &
cooling

fordT/dz >0

upwardly displaced
fluid is heated
& rises

convectively
unstable




The HBI

magnetic field lines
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Nonlinear Evolution: HBI

heat flux strongly
suppressed
Qs ~ 0.01 Qi
remains conductive,
not convective '
(very different from
hydro convection)
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B-field energy Local 3D Simulations
amplified by ~ 100 initially weak B; no cooling




The MTI & HBI in Clusters

cool core cluster temperature profile
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The Entire Cluster is Convectively Unstable!

Instabilities suppressed by |.strong B (e.g., solar corona) or
2. isotropic heat transport >> anisotropic heat transport (e.g., solar interior)




Global Cluster Simulations

e 3D w/ cooling & anisotropic conduction (Athena)

® non-cosmological: isolated cluster core (< 200 kpc)

® conductive flux is not a “free parameter”’; depends on dynamics!

volume averaged
efidddangle
vs: tine

predict toroidal

~fieldsdinccore
(*“"'1"\ ing klaplet)

s
)
e
)
N

sl
@)

=
)
L -
3E

3
©.0
o=

<C

0 2000

Parrish, Quataert, +, |n Drep

Radius (kpc)



o~
2
N
N—
()
H
= |
)
S
e
()
(ol
5
—

Global Cluster Simulations

® 3D w/ cooling & anisotropic conduction (Athena)

® artificial source of heating to balance cooling at < 20 kpc (“AGN”)
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Stable for
~ 10 Gyr




HBI-induced Turbulence

Vturb =~ 0.0 I 'O. I Cs

detectable w/ next
generation x-ray
calorimeters

mlxmg of metals

Perseus

Sharma +,in prep
Fe abundance (solar)

Density of Passive Scalar
Linear Color Scale
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Effects on CR Mixing

AGN heating is the most promising mechanism balancing cooling; but precise
physical mechanism & how it couples the cluster core unclear
1.7 Gyr 3.4 Gyr 5 Gyr 7 Gyr

CRs + B- “real” cluster plasma:
s - . ol buoyantly unstable &

anisotropic

conduction easier to mix CRS

adiabatic plasma:
adiabatic buoyantly stable &

CRs +

ENF]

harder to mix CRs

pcr/p logarithmic scale; red/blue = high/low pcr




Summary

® Understanding the thermal history of galaxy
cluster cores is a key to understanding the
process of massive galaxy/BH formation

® Recent Surprises: the plasma throughout a galaxy

cluster is convectively unstable (MTI & HBI)!
® key role of anisotropic thermal conduction (accept no substitutes)

® HBI inhibits conductive heating of cluster cores

® The Future: interplay between AGN heating, cosmic
rays, and realistic cluster thermodynamics




