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Core or No Core?
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FIGURE 2 Illustration of the ways that a planet changes shape
owing to its own rotation. A nonrotating planet (a) is purely
spherical. Saturn’s distortion due to its gravitational harmonic J2

is shown approximately to scale in (b). The J4 and J6 distortions
of Saturn are shown in (c) and (d), exaggerated by about 10 and
100 times, respectively. (Figure courtesy William Hubbard, Univ.
Ariz.)

from observations of spacecraft or stellar occultations. Dis-
tortion of level surfaces cannot be described simply by el-
lipses. Instead, the distortion is more complex and must
be described by a power series of shapes, as illustrated in
Fig. 2. The most obvious distortion of a spherical planet
(Fig. 2a) is illustrated in Fig. 2b. More subtle distortions
are described by harmonic coefficients of ever increasing
degree, as illustrated in Figs. 2c and 2d.

A nonrotating, fluid planet would have no J2n terms in
its gravitational potential. Thus, the gravitational harmonics
provide information on how the shape of a planet responds
to rotating-frame forces arising from its own spin. Since
the gravitational harmonics depend on the distribution in
mass of a particular planet, they cannot be easily compared
between planets. Instead a dimensionless linear response
coefficient, !2, is used to compare the response of each
jovian planet to rotation. To lowest order in the square of the
angular planetary rotation rate, ω2, !2 ≈ J2/q, where q =
ω2a3/GM . Table 1 lists the !2 calculated for each planet.
The jovian planets rotate rapidly enough that the nonlinear
response of the planet to rotation is also important and must
be considered by computer models.

Because the gravitational harmonics provide information
about the planet’s response to rotation, interpretation of the
harmonics requires accurate knowledge of the rotation rate
of the planet. Before the space age, observations of atmo-

spheric features as they rotated around the planet provided
rotation periods. This method, however, is subject to errors
introduced by winds and weather patterns in the planet’s
atmosphere. Instead, rotation rates are now found from the
rotation rate of the magnetic field of each planet, generally
as measured by the Voyager spacecraft (radio emissions aris-
ing from charged particles in Jupiter’s magnetosphere can
be detected by radio telescopes on Earth). This approach as-
sumes that convective motions deep in the electrically con-
ducting interior of the planet generate the magnetic field
and that the field’s rotation consequently follows the rota-
tion of the bulk of the interior. Measuring Saturn’s magnetic
field rotation rate is particularly difficult because the field
is nearly symmetric about the rotation axis of the planet.
Indeed, in 2006, data from the Cassini spacecraft led to a
revision in the previously accepted rotation period by 1%,
and the new value, shown in Table 1, may still not reflect
the true rotation of the deep interior.

2.2 Atmosphere

The observable atmospheres of the jovian planets provide
further constraints on planetary interiors. First, the atmo-
spheric temperature at 1 bar pressure, or T1, constrains
the temperature of the deep interior. The interior temper-
ature distribution of the jovian planets is believed to follow
a specified pressure–temperature path known as an adi-
abat. For an adiabat, knowledge of the temperature and
pressure at a single point uniquely specifies the tempera-
ture as a function of pressure at all other points along the
adiabat. Thus, T1 gives information about the temperature
structure throughout the convective interior of the planet.
Both the amount of sunlight that the atmosphere absorbs
and the amount of heat carried by convection, up from the
interior of the planet to the atmosphere, control T1. For
each planet, save Uranus, T1 is higher than expected if the
atmosphere were simply in equilibrium with sunlight. In
fact, these atmospheres are heated from below as energy is
transported upward from the slowly cooling planetary in-
teriors. The measured heat flow ranges from 0.3 W m−2 at
Neptune, to 2.0 W m−2 at Saturn, to 5.4 W m−2 at Jupiter.
Uranus has no detectable internal heat flow.

Second, the composition of the observable atmosphere
also holds clues to the internal composition. This is because
of the supercritical nature of the jovian atmospheres. The
principal component of the jovian atmosphere, hydrogen,
does not undergo a vapor–liquid phase change above 33 K.
Because the planets are everywhere warmer than this tem-
perature, the observed atmosphere is directly connected to
the deep interior. Knowledge of the composition of the top
of the atmospheres therefore provides some insight to the
composition at depth. [See Atmospheres of the Giant
Planets.]

The Galileo spacecraft entry probe returned direct mea-
surements of the composition of Jupiter’s atmosphere. The
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FIGURE 5 Gravitational
harmonics are computed from
integrals over density and powers
of radius of a rotating planet. The
curves illustrate the integrands for
the harmonics J2, J4, and J6 of a
Saturn interior model.
Higher-degree terms are
proportional to the interior
structure in regions progressively
closer to the surface. All curves
have been normalized to unity at
their maximum value. The bump in
the J2 curve near 0.2 is due to the
presence of the core.

For the jovian planets, an x (P ) relation is typically guessed,
an interior model computed, and the results compared to
the observational constraints. With multiple iterations, a
variation in composition with pressure that is compatible
with the observations is eventually found.

The combination of these three ingredients, an equa-
tion of state P = P (T , x , ρ), a temperature–pressure re-
lation, T = T (P ), and a composition–pressure relation,
x = x (P ), completely specifies pressure as only a func-
tion of density, P = P (ρ). Because the jovian planets are
believed to be fluid to their centers, the pressure and
density are also related by the equation of hydrostatic
equilibrium (with a first-order correction for a rotating
planet):

∂ P
∂r

= −ρ(r)g(r) + 2
3

rω2ρ(r)

where g is the gravitational acceleration at radius r and ω

is the angular rotation rate. This relation simply says that,
at equilibrium, the pressure gradient force at each point
inside the planet must support the weight of the material at
that location. Combining the equation of hydrostatic equi-
librium with the P (ρ) relation finally allows determinations
of the variation of density with radius in a given planetary
model, ρ = ρ (r).

The computed model must then satisfy all the observa-
tional constraints discussed in Section 2. Total mass and
radius of the model are easily tested. The response of the
model planet to rotation and the resulting gravitational har-

monics must be calculated and compared with observations.
Figure 5, which shows the relative contribution versus the
depth from the center of the planet, illustrates the regions
of a Saturn model that contribute to the calculation of the
gravitational harmonics J2, J4, and J6. Higher degree modes
provide information about layers of the planet progressively
closer to the surface.

The construction of computer models that meet all the
observational constraints and use realistic equations of state
requires several iterations, but the calculation does not
strain modern computers. The current state-of-the-art is
to calculate dozens of interior models, while varying the
many parameters within theoretically or experimentally
determined boundaries. An example is the uncertainties
in the equations of state of hydrogen and helium that re-
flect the differences between experimental data and theory.
The size and composition of the heavy element core, as well
as the heavy element enrichment in the envelope, are also
varied with different equations of state for ices and rocks.
Only a subset of all the models considered will fit all avail-
able planetary constraints, and these models are taken as
successful descriptions of the planets. However, by neces-
sity, each modeler begins with an ad hoc set of assumptions
that limit the range of models that can be calculated. This
inherent limitation of models should always be borne in
mind when considering their results, although recent mod-
eling efforts do examine a wider range of possible models,
using fewer a priori assumptions about the interiors. The
consensus for the structure of jovian planet interior models
is presented in the next section.
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Giant planet formation by
gravitational fragmentation
= gravitational instability

= “top-down”

Requirements: Q ~ 1 and tcool < Ω-1

Could be met at large distance > 70 AU

Uncertainties include
• disk temperature
• mass infall rate from surrounding natal envelope
• final planet masses

More easily fragments into brown dwarfs than planets

Kratter et al. 10
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M dwarf
75 MJ

L dwarf
65 MJ

T dwarf
30 MJ

Jupiter
1MJ

The new spectral classes
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!1047 MJ). Distinguished by color are objects with
masses equal to or below 13 MJ (red), objects above
13 MJ and below the main-sequence edge (green), and
stars above the main-sequence edge (blue). These color
categories merely guide the eye and clarify what would
otherwise be a figure difficult to parse. The 13 MJ cutoff
is near the deuterium-burning limit, but otherwise
should not be viewed as being endowed with any over-
arching significance. In particular, objects below 13 MJ
that are born in the interstellar medium in a manner
similar to the processes by which stars arise should be
referred to as brown dwarfs. Objects that are born in
protostellar disks by processes that may differ from
those that lead to stars (perhaps after nucleating around
a terrestrial superplanet) should be referred to as plan-
ets. Though theoretical prejudice suggests that such ob-
jects may not achieve masses near 13 MJ, if they do so
they are most sensibly called planets. Hence, even if the
mass distribution functions of giant planets and brown
dwarfs overlap (which they no doubt do), a distinction
based upon mode of formation, and not mass, has com-

pelling physical merit, despite the fact that we cannot
currently identify the history or origin of any given
substellar-mass object.

Detailed evolutionary models were calculated and dis-
cussed by Burrows et al. (1993), Burrows and Liebert
(1993), and Burrows et al. (1997). We summarize in Fig.
1 many of these findings for the evolution of solar-
metallicity substellar-mass objects with masses from
0.3 MJ to 0.2 M! . The bifurcation between stars and
brown dwarfs manifests itself only at late times
(!109 yr). At lower metallicities, the brown dwarf/star
luminosity gap widens earlier and is more pronounced
(see Sec. III). After 108.3–109.5 yr, stars stabilize at a
luminosity for which the power derived from thermo-
nuclear burning in the core compensates for the photon
luminosity (losses) from the surface. Brown dwarfs are
those objects that do not burn light hydrogen at a rate
sufficient to achieve this balance, though the more mas-
sive among them (!0.065 M!) do burn light hydrogen
for a time. Figure 2 depicts the evolution of the central
temperature (Tc) for the same set of masses portrayed

FIG. 1. Evolution of the luminosity (in L!) of isolated solar-metallicity red dwarf stars and substellar-mass objects versus age (in
years). The stars are shown in blue, those brown dwarfs above 13 MJ are shown in green, and brown dwarfs/giant planets equal to
or below 13 MJ are shown in red. Though the color categories are based on deuterium or light hydrogen burning, they should be
considered arbitrary vis à vis whether the object in question is a brown dwarf or a planet, sensibly distinguished on the basis of
origin. The masses of the substeller objects/stars portrayed are 0.3, 0.5, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0 11.0, 12.0, 13.0,
and 15.0 MJ and 0.02, 0.025, 0.03, 0.035, 0.04, 0.045, 0.05, 0.055, 0.06, 0.065, 0.07, 0.075, 0.08, 0.085, 0.09, 0.095, 0.1, 0.15, and 0.2 M!

(!211 MJ). For a given object, the gold dots mark when 50% of the deuterium has burned and the magenta dots mark when 50%
of the lithium has burned. Note that the lithium sequence penetrates into the brown dwarf regime near 0.065 M! , below the
HBMM. Figure based on Fig. 7 of Burrows et al., 1997 [Color].

722 Burrows et al.: Theory of brown dwarfs
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Cooling curves (standard “hot start”)



“hot start”

“cold start”
(core accretion)

Early evolution 
uncertain



Burrows et al. 2007

Hot Jupiters are inflated

Transit radii > Theoretical radii



How much = How long ago

Radiative cooling:

Not completely degenerate:

Isentrope:
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se(Te, Pe ∼ g/κe) = sc(Tc, Pc ∼ GM2/R4)

Tc

Te

R

3 equations
in 3 unknowns

Tc ∝ t
−7/17

L ∝ t
−24/17

Te, Tc, R

R ↑ Tc ↑ t ↓ L ↑

t ∼ 2 × 107 yr

using 
more 

accurate 
analytic
formulae

from Burrows 
& Liebert 93

Cooling tracks

L ∼ 2 × 1026 erg/s

vs.numericalL ∼ 6 × 1026 erg/s

to increase R by 30% ,

Burrows et al. 07



“Easy” problem

Compare required L
6 x 1026 erg/s

to

Incident L
L∗

4πa2
πR2

pA ∼ 3 × 1029 erg/s

Even “easier”: When planet is irradiated,
                       actual required L ~ 4 x 1025 erg/s
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F =

q

c
v × B

Ohmic P = Iεemf =
v2B2σ#A

c2

I = εemf/R = εemf

σA

#

εemf = W/q = F"/q

Induced Current ⇒ Ohmic Power 



P = I
2
R

P =

∫ ∫ ∫
j2

σ
dV j = σf = σ

(v

c

× B + E
)

Batygin & Stevenson 10, Spiegel et al. 09

Planetary conductivity

copper 6e7 S/m
drinking water 0.0005 to 0.05 S/m



j = σf = σ

(v

c

× B + E
)

0

1 km/s

r

δ = 0.02 R

delta ~ 2.3e8 cm (R ~ 1.05e10)

vm
δ

φ

θ

f
L∗

4πa2
πR2

∼

1

2
ρv24πR2h

R/v
⇒ v3

∝ L∗/a2

v(r, θ) = vm sin θ φ̂



Differential rotation may only be skin deep 

If winds extend too deep,
Ohmic power > internal luminosity

δ < 0.03R for Jupiter (maybe)

Also Taylor-Proudman theorem,
plus observed stability of B field,
enforces near solid-body rotation in 
convective interior (maybe)
[ P(ρ) ⇒ v constant on cylinders ]

Liu, Goldreich, & Stevenson 08
see also critique by Glatzmaier 08



j = σf = σ

(v

c

× B + E
)

Br
3

Assume B(R) = 10 G  [cf. Jupiter B(R) = 4.2 G]
Energy flux scaling : B2

∝ ρ1/3q2/3

To reproduce assumed B,
assume surface dynamo different from Jupiter

Elsasser Number =
O(j × B)/c

O(2ρΩ × v)
∝

σB2

ρΩ

Elsasser Number ∼ 1 ⇒ B2
∝ ρΩ/σ

Internal flux q forHot Jupiter ∼ 102
q for Jupiter

Christensen, Holzwarth, & Reiners 2009 
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∼ σ

v
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P =

∫ ∫ ∫
j2

σ
dV

∼

σv2B2

c2
4πR

2
δ

Atmospheric Power 

∼ 8 × 1027erg/s



δ

δRC

j

j
δ

Power at Radiative-Convective (RC) Boundary 

δRC

δ

PRC =

∫ ∫ ∫
j2

σ
dV

∼ P
σ

σRC

δRC

R
∼ 1 × 1025erg/s

∼
j2

σRC

2πR × δδRC



How much extra power and where?

Where :
convective

interior

⇒ R(s, M)

Radiative-
convective (RC) 

boundary

Specific entropy s = sRC ≈ score

Spiegel, Silverio, and Burrows 2009

RC boundary on Jupiter 0.1--1 bar


