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Fig. 1. The luminosity evolution (light curve) of supernovae. Common SN explosions
reach peak luminosities of ~10*® ergs s™ (absolute magnitude > —19.5). Super-
luminous SNe (SLSNe) reach luminosities that are greater by a factor of ~10. The
prototypical events of the three SLSN classes—SLSN-I [PTFO9cnd (4)], SLSN-II [SN
2006gy (12, 13, 77)], and SLSN-R [SN 2007bi (7)]—are compared with a normal
type la SN (Nugent template), the type lln SN 2005cl (56), the average type Ib/c
light curve from (65), the type IIb SN 2011dh (78), and the prototypical type Il-P SN
1999em (79). All data are in the observed R band (80).




Qutline

® (Observational Evidence for Extreme Mass Loss in
the Last Few Years of the Lives of Massive Stars

® |ate Stages of Massive Stellar Evolution




Core Collapse SNe




Supernovae Powered by Interaction
with Ambient Gas (Type lIn SNe)

® |nteracting SNe: SN shock runs into dense wind
at ~ 1023 AU and KE = thermal energy, radiation

Analogous to supernova
remnant but interaction
is much closer to the star
with stellar wind not ISM




Supernovae Powered by Interaction
with Ambient Gas (Type lIn SNe)

® |nteracting SNe: SN shock runs into dense wind
at ~ 10?3 AU and KE = thermal energy, radiation
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KE of shocked wind = radiation




Supernovae Powered by Interaction
with Ambient Gas (Type lIn SNe)

® |nteracting SNe: SN shock runs into dense wind
at ~ 10?3 AU and KE = thermal energy, radiation

® vi.ind~ 103 km/s & R ~ 1023 AU = interaction with

mass lost in last ~ years of stel

ar evolution

® Unique probe of massive stars just prior to core collapse
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Pre SN Mass Loss Rate Can be

Estimated From Observations
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Figure 13. Decomposition of the Ha feature in the 2005 April 30 spectrum of SN 2005bx.




Pre SN Mass Loss Rate Can be
Estimated From Observations
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Superluminous SNe
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Fig. 1. The luminosity evolution (light curve) of supernovae. Common SN explosions
reach peak luminosities of ~10% ergs s™* (absolute magnitude > —19.5). Super-
luminous SNe (SLSNe) reach luminosities that are greater by a factor of ~10. The
prototypical events of the three SLSN classes—SLSN-I [PTFO9cnd (4)], SLSN-II [SN
2006gy (12, 13, 77)], and SLSN-R [SN 2007bi (7)l—are compared with a normal
type la SN (Nugent template), the type lin SN 2005cl (56), the average type Ib/c
light curve from (65), the type lIb SN 2011dh (78), and the prototypical type II-P SN
1999em (79). All data are in the observed R band (80).

can have E radiated
o~ |05| eres & Ekinetic

one type is
interaction with
particularly large mass
ejection ~ Msun
prior to core collapse




Shock Breakout in a Wind

RSG SBO 5 Large Muwind prolongs

BSG SBO : shock breakout signature
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Pre-SN Outbursts
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My foray into sophisticated data science

® AM up to ~Msyn = AM/M ~ 104~ |02

® At s )'r’S — At/tlifetime e -7

® Large M inferred in few % of SNe =




Thermal Balance in Stars

® Main sequence & low mass stellar evolution

I—fusion o I—rad ah I—conv

® |ate Stages of Massive Stellar Evolution

® Temp for C fusion = thermal neutrino cooling important

qusion = Lneutrino




log energy generation/loss (erg/g/s)

Woosley, Heger, and Weaver: Evolution and explosion of massive stars
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Thermal Balance in Stars

® Main sequence & low mass stellar evolution

qusion o I—rad + I—conv

® |ate Stages of Massive Stellar Evolution

® Temp for C fusion = thermal neutrino cooling important

qusion i Lneutrino >> LEdd

® |arge Liusion accelerates stellar evolution



Late Stages of Massive

Stellar Evolution

Stage Duration (#yyc) Ltusion (L)

Carbon ~ 103 yr ~ 106
Neon ~ 1lyr ~10°
Oxygen  ~1lyr ~ 1010
Silicon  ~1d ~ 1012

Late stage mass loss tied to C, Ne, O, & Si

fusion stages of stellar evolution




Preferential Mass Loss in the
Years Prior to Core Collapse

® Binaries. e.g.,, Common Envelope Evolution with
BH/NS that Ejects Mass & triggers Core Collapse

(Chevalier 2012)

® Tap into Core Fusion Energy to Power Outflow

® wave-driven mass loss (Quataert & Shiode 2012)
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Convective Excitation of Waves

t=11260.455

vorticity
—0.005 0.000

035 [N

radiative zone
with waves
excited by
convection

convection
Zonhe

Daniel Lecoanet




Convective Excitation of Waves

t=11260.455
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Internal Gravity Waves

M = vlcs
(conv. Mach #)

Ewaves = M LCOHV

w ~ v/H

Daniel Lecoanet




become outgoing

s '1 sound waves
s PN in stellar envelope
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MESA Models with Super-Eddington Energy
Deposition in Stellar Envelope

Star Expands to
Become RSG

Mass Loss:

Lwave > LEdd

Binary: Roche
Lobe Overlow




become outgoing
sound waves
in stellar envelope
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Variation in Wave-Driven Mass Loss with Progenitor
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Variation in Wave-Driven Mass Loss with Progenitor

~10% of progenitors susceptible to wave M

Star Expands to Become
Giant w/ large Mwave

(Ewave deposited out in envelope)
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Large Ewave has little effect

(Ewave deposited deep in star)




B convective - He core

overshoot - C/O core

log (time to core collapse)|yr|

Core Fusion: Waves Propagate into Envelope
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Shell Fusion: Waves Propagate into Envelope & Core




Effect of Waves on the Spin
of the Stellar Core

(Fuller +2015)
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gravity waves
travel into the
core that will
become a NS!

Shell C, O, Ne, Si Fusion
(~10 yr to = day)




What if the Fe Core is Very Slowly
Rotating Prior to Core Collapse!?

t=11260.455

N Core is Stochastically Spun Up
oosooso oons by Waves from Si Shell Fusion
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Neddy ~ 300 (Si shell fusion)

(cf. Neady ~ 10'! for MS solar convection)




What if the Fe Core is Very Slowly
Rotating Prior to Core Collapse!?

Core is Stochastically Spun Up
by Waves from Si Shell Fusion

J JW&VGS JW&VGS
core

Nelc{c?y (WcTshell)1/2

Neddy ~ 300 (Si shell fusion)

(cf. Neady ~ 10'! for MS solar convection)

= Pns ~ 0.1 sec

1.5 2.0 2.5

log (PFe,maX(S)) ~ estimated NS spin periods
from population studies




Overview

® | ision >> LEdd in last ~ yr-decade of stellar
evolution — vigorous convection and a
super-Eddington wave flux

® prodigious mass loss seen in circumstellar interaction
and shock breakout from core-collapse SNe

® reshapes the spin of the stellar core & plausibly
explains the typical ~0.| sec spin of radio pulsars

P-Pdot Dlagram
— SGRs,

AXPs

| Radio
; Pulsars
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light curve fro (65) th typ e IIb SN 2011dh (78), and the pr ttypl al type II-P SN
1999em (79). All data are in the observed R band (80).




